\qquad
Date \qquad Pd \qquad

Chemistry - Unit 4 Worksheet 4

Answer the following questions on your own piece of paper. Be sure to show all mathematical work and reasoning and use complete sentences in explanations.

1. Table sugar is a compound known as sucrose. Sucrose is composed of the elements carbon, hydrogen, and oxygen. Analysis of a 20.0 g of sucrose from a bag of sugar finds that the sugar is composed of 8.44 g of carbon, 1.30 g of hydrogen, and 10.26 g of oxygen.
a. Express, as fractions, the ratio of the mass of each element to the total mass of the sample.
b. Using these ratios, calculate the percent composition by mass of each element in the compound.
2. A similar chemical analysis is performed on a 500.0 g sample of the sugar isolated from a sample of pure sugar cane. Analysis shows this sample contains 211.0 g of carbon, 32.5 g of hydrogen, and 256.5 g of oxygen.
a. Determine the percent composition by mass of each element in the sugar cane sample.
b. Could the sugar in this sample be sucrose? Justify your conclusion.
3. A similar chemical analysis is performed on a 200.0 g sample of the sugar found in corn syrup. This sample contains 80.0 g of carbon, 13.3 g of hydrogen and 106.7 g of oxygen.
a. Determine the percent composition by mass of each element in the sugar cane sample.
b. Could the sugar in corn syrup be sucrose? Justify your conclusion.
4. A 1.0 g sample of hydrogen reacts completely with 19.0 g of fluorine to form a compound of hydrogen and fluorine.
a. What is the percent by mass of each element in the compound?
b. What mass of hydrogen would be present in a 50 g sample of this compound?
c. Justify your answer to b.
5. Explain how the previous examples help to illustrate the Law of Definite Proportions.
6. Two compounds of hydrogen and oxygen are tested. Compound I contains 15.0 g of hydrogen and 120.0 g of oxygen. Compound II contains 2.0 g of hydrogen and 32.0 g of oxygen.
a. Determine the ratio of the mass of oxygen to the mass of hydrogen in each of the compounds.
b. Why are the compounds not the same?
c. What is significant about these mass ratios?
d. If compound I is water, what could be the formula of compound II?
7. Nitrogen and oxygen combine to form a variety of compounds. The following data were collected for three different compounds of nitrogen and oxygen:

Analysis Data of Nitrogen \& Oxygen	
Compounds	

combines with 1.00 \mathrm{~g} of

Oxygen\end{array}\right|\)| 1.750 g | |
| :---: | :---: |
| Compound | 0.8750 g |
| B | 0.4375 g |
| C | |

a. Additional evidence shows that the formula of compound B is NO. Sketch particle diagrams of molecules of all three compounds.
b. Justify your representations above.
8. Explain how the examples in questions 6 and 7 help to illustrate the Law of Multiple Proportions.

